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Background and Motivation

e Exponential Model Growth:

o GPT2 1.5B, TS 11B, Megatron-LM 8.3B

e Challenges in Training Large Models:
o Memory Bottlenecks: Hardware memory limitations

o Parallelism Limitations: Model Parallelism, Data Parallelism, Pipeline Parallelism

Minimize memory usage on GPU while maintain low communication volume and high computational granularity



Related Work

Trade offs between functionality usability memory, compute/communication efficiency

e Parallelism
o Data Parallelism (DP): Replicates the full model across devices, causing redundant memory
consumption and limiting scalability.
o Model Parallelism (MP): Splits models across devices (vertically) but incurs significant
communication overhead, especially across nodes.
o Pipeline Parallelism (PP): Splits the model across layers (horizontally) and devices but is complex
and has limitations with tied weights and batch normalization
e Non- Parallelism:
o Reducing Activation Memory
o CPU Offload: Storing model state to CPU memory



Zero Redundancy Optimizer (ZeRO)

e Model State:

o  Optimizer states, gradients and parameters

o ZeRO-DP
e Residual State:

o Activations, temporary buffers, unusable fragmented memory

o ZeRO-R
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ZeRO-DP

e DPvsMP
o  DP has more inefficiency memory-wise
o  DP has better scaling efficiency
o  Both keep all model states

Eliminates the memory redundancy by partitioning the optimizer states, gradients and parameters across data
parallel process.



ZeRO-DP

e Optimizer State Partitioning (Pos):
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group the optimizer states into Nd equal partitions, each data parallel process only needs to store and

update 1/Nd of the total optimizer states and then only update 1/Nd of the parameters.

Memory: Reduces memory by 4x

Communication: After each training step, an all-gather operation (W) is performed across all devices

to ensure all optimizer states are synchronized.
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ZeRO-DP

e Add Gradient Partitioning (Pos + g):

o  Only the gradients for the corresponding partitioned parameters are needed and was bucked to be
update at once

o Memory: Reduces memory by 8x

o Communication: requires a scatter-reduce operation (W)
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ZeRO-DP

e Add Parameter Partitioning (Pos + g+p):
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Similarly each process only stores the parameters corresponding to its partition.
Memory: Reduces memory by 16x

Communication: An addition (W) needed as parameters are all-gathered on-demand during forward
propagation, but communication is kept efficient through pipelining and only fetching the parameters
needed for the current operation.

Communicationintotal 3W=15*2 Y

2+ 2+ K)*x¥
N

1.9GB

d



ZeRO-R

e Tackle remaining memory issue:

o Activations:
m eg. GPT2 with 1.5B parameter sequence length of 1k and batch size of 32 needs 60GB
m Activation checkpoint 8Gb

o Temporary buffer
m eg. with 1.5B parameter model, fp32 buffer needs 6GB of memory
m Buffer size would change with the model size (non-trivial)

o Unusable memory fragments
m  Not enough contiguous memory blocks even though there are more free memory than needed
m  OOM when 30% of memory still available



ZeRO-R

e Partitioned Activation Checkpointing (Pa/+cpu):

o After the forward pass, the activations are split (partitioned) across GPUs, and they are only gathered
when needed during the backward pass.

o On-demand Reconstruction: When a GPU needs an activation that it doesn't have locally for the
backward pass, it gathers the required data from other GPUs through an all-gather operation.

o Memory: Reduces memory by the layer by Mp degrees



ZeRO-R

e Constant Size Buffer (Cb):
o  Previously buffer size is proportional to model size

o ZeRO-R caps the buffer size at a constant value. This prevents buffer memory from becoming
unmanageable as models grow.

e Memory Defragmentation (Md):

o performs on-the-fly memory defragmentation by pre-allocating contiguous memory chunks for
activations and gradients.



Evaluation Setup and Result

e 400 NVIDIA V100 GPUs (distributed across 25 DGX-2 nodes) with 800 Gbps inter-node communication

bandwidth.
e ZeRO-100B: (Pos+g and ZeRO-R)
o efficiently run models with up to 170B parameters on 400 GPUs, more than 8x bigger than

Megatron-LM.

MP | GPUs Max Theoretical Model Size Measured Model Size
Baseline Pus Postg | Post+g+p || Baseline | ZeRO-DP (P,)
1 64 2B 7.6B 14.4B 128B 1.3B 6.2B
2 128 4B 15.2B 28.8B 2568 2.5B 12.5B
4 256 8B 30.4B 57.6B 0.5T 5B 25B
8 512 16B 60.8B | 115.2B 1T 10B 50B
16 1024 32B 121.6B | 230.4B 2T 20B 100B




Speed and Model Size

Successfully run models with up to 170B parameters on 400 GPUs
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Superlinear Scalability

Total Performance (Tflops)
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Optimizations Analysis ZeRODP | ZeROR
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Thoughts

Strength:

e reduces memory bottlenecks
e Allow model size to increase dramatically
e Easy interface

Weakness:

e Would the fix buffer size still be applicable with trillion and trillions parameter model?
e |t would be nice if in the experiment they also add the parameter partition to show the communication
overhead vs memory



