ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

By: Samyam Rajbhandari*, Jeff Rasley*, Olatunji Ruwase, Yuxiong He

Background and Motivation

- Exponential Model Growth:
 - GPT2 1.5B, T5 11B, Megatron-LM 8.3B

- Challenges in Training Large Models:
 - **Memory Bottlenecks**: Hardware memory limitations
 - **Parallelism Limitations**: Model Parallelism, Data Parallelism, Pipeline Parallelism

Minimize memory usage on GPU while maintain low communication volume and high computational granularity

Related Work

Trade offs between functionality usability memory, compute/communication efficiency

- Parallelism
 - **Data Parallelism (DP)**: Replicates the full model across devices, causing redundant memory consumption and limiting scalability.
 - **Model Parallelism (MP)**: Splits models across devices (vertically) but incurs significant communication overhead, especially across nodes.
 - **Pipeline Parallelism (PP)**: Splits the model across layers (horizontally) and devices but is complex and has limitations with tied weights and batch normalization
- Non- Parallelism:
 - Reducing Activation Memory
 - **CPU Offload**: Storing model state to CPU memory

Zero Redundancy Optimizer (ZeRO)

- Model State:
 - Optimizer states, gradients and parameters
 - ZeRO-DP
- Residual State:
 - Activations, temporary buffers, unusable fragmented memory
 - o ZeRO-R

Parameter: 2Ψ Gradient: 2Ψ Optimizer: 12Ψ

- Parameters: 4Ψ
- Momentum: 4Ψ
- Variance: 4Ψ

- DP vs MP
 - DP has more inefficiency memory-wise
 - DP has better scaling efficiency
 - Both keep all model states

Eliminates the memory redundancy by **partitioning** the optimizer states, gradients and parameters across data parallel process.

• Optimizer State Partitioning (Pos):

- group the optimizer states into Nd equal partitions, each data parallel process only needs to store and update 1/Nd of the total optimizer states and then only update 1/Nd of the parameters.
- **Memory**: Reduces memory by 4x
- **Communication**: After each training step, an all-gather operation (Ψ) is performed across all devices to ensure all optimizer states are synchronized.

- Add Gradient Partitioning (Pos + g):
 - Only the gradients for the corresponding partitioned parameters are needed and was bucked to be update at once
 - **Memory**: Reduces memory by 8x
 - **Communication**: requires a scatter-reduce operation (Ψ)

• Add Parameter Partitioning (Pos + g+p):

- Similarly each process only stores the parameters corresponding to its partition.
- **Memory**: Reduces memory by 16x
- **Communication**: An addition (Ψ) needed as parameters are all-gathered on-demand during forward propagation, but communication is kept efficient through pipelining and only fetching the parameters needed for the current operation.
- Communication in total $3\Psi = 1.5 * 2 \Psi$

ZeRO-R

- Tackle remaining memory issue:
 - Activations:
 - eg. GPT2 with 1.5B parameter sequence length of 1k and batch size of 32 needs 60GB
 - Activation checkpoint 8Gb
 - Temporary buffer
 - eg. with 1.5B parameter model, fp32 buffer needs 6GB of memory
 - Buffer size would change with the model size (non-trivial)
 - Unusable memory fragments
 - Not enough contiguous memory blocks even though there are more free memory than needed
 - OOM when 30% of memory still available

ZeRO-R

• Partitioned Activation Checkpointing (Pa/+cpu):

- After the forward pass, the activations are split (partitioned) across GPUs, and they are only gathered when needed during the backward pass.
- **On-demand Reconstruction**: When a GPU needs an activation that it doesn't have locally for the backward pass, it gathers the required data from other GPUs through an **all-gather** operation.
- **Memory**: Reduces memory by the layer by Mp degrees

ZeRO-R

• Constant Size Buffer (Cb):

- Previously buffer size is proportional to model size
- ZeRO-R caps the buffer size at a constant value. This prevents buffer memory from becoming unmanageable as models grow.
- Memory Defragmentation (Md):
 - performs **on-the-fly memory defragmentation** by pre-allocating contiguous memory chunks for activations and gradients.

Evaluation Setup and Result

- 400 NVIDIA V100 GPUs (distributed across 25 DGX-2 nodes) with 800 Gbps inter-node communication bandwidth.
- ZeRO-100B: (Pos+g and ZeRO-R)
 - efficiently run models with up to 170B parameters on 400 GPUs, more than 8x bigger than Megatron-LM.

MP	GPUs	Max Theoretical Model Size				Measured Model Size	
		Baseline	P_{os}	P_{os+g}	P_{os+g+p}	Baseline	ZeRO-DP (P _{os})
1	64	2B	7.6B	14.4B	128B	1.3B	6.2B
2	128	4B	15.2B	28.8B	256B	2.5B	12.5B
4	256	8B	30.4B	57.6B	$0.5\mathrm{T}$	5B	25 B
8	512	16B	60.8B	115.2B	1T	10B	50B
16	1024	32B	121.6B	230.4B	2T	20B	100B

Speed and Model Size

Successfully run models with up to 170B parameters on 400 GPUs

Model Size - Billion Parameters

Superlinear Scalability

Optimizations Analysis

Used 5 different combinations of ZeRO-DP + ZeRO-R

	ZeRO-DP	ZeRO-R
1	P_{os}	C_B+M_D
2	P_{os}	$C_B+M_D+P_a$
3	P_{os+g}	$C_B + M_D$
4	P_{os+g}	$C_B+M_D+P_a$
5	P_{os+g}	$C_B+M_D+P_{a+cpu}$

Figure 6: Max model size

Figure 7: Max cache allocated.

Figure 8: Throughput per GPU.

Thoughts

Strength:

- reduces memory bottlenecks
- Allow model size to increase dramatically
- Easy interface

Weakness:

- Would the fix buffer size still be applicable with trillion and trillions parameter model?
- It would be nice if in the experiment they also add the parameter partition to show the communication overhead vs memory